

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-04/0095 vom 11. Mai 2017

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Würth Injektionssystem W-VIZ

Kraftkontrolliert spreizender Verbunddübel mit Ankerstange W-VIZ-A und Innengewindehülse W-VIZ-IG zur Verankerung im Beton

Adolf Würth GmbH & Co. KG Reinhold Würth Straße 12-17 74653 Künzelsau

Würth Herstellwerk W1, Deutschland

35 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 5: "Verbunddübel", April 2013,

verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

ETA-04/0095 vom 23. April 2015

Z22122.17

Europäische Technische Bewertung ETA-04/0095

Seite 2 von 35 | 11. Mai 2017

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-04/0095

Seite 3 von 35 | 11. Mai 2017

Besonderer Teil

1 Technische Beschreibung des Produkts

Das Injektionssystem W-VIZ ist ein kraftkontrolliert spreizender Verbunddübel, der aus einer Mörtelkartusche WIT-VM 100, WIT-VIZ, WIT-EXPRESS, WIT-VM 100 express oder WIT-VIZ express und einer Ankerstange mit Spreizkonen und einem Außengewinde (Typ W-VIZ-A) oder mit einem Innengewinde (Typ W-VIZ-IG) besteht.

Die Kraftübertragung erfolgt über die mechanische Verzahnung einzelner Konen im Injektionsmörtel und weiter über eine Kombination aus Halte- und Reibungskräften im Verankerungsgrund (Beton).

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand für W-VIZ-A	Siehe Anhang C1 bis C7
Verschiebungen unter Zug und Querlast für W-VIZ-A	Siehe Anhang C8 und C9
Charakteristischer Widerstand für W-VIZ-IG	Siehe Anhang C10 bis C12
Verschiebungen unter Zug und Querlast für W-VIZ-IG	Siehe Anhang C12

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Keine Leistung bestimmt

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Bezüglich gefährlicher Stoffe können die Produkte im Geltungsbereich dieser Europäischen Technischen Bewertung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Verordnung (EU) Nr. 305/2011 zu erfüllen, müssen gegebenenfalls diese Anforderungen ebenfalls eingehalten werden.

Europäische Technische Bewertung ETA-04/0095

Seite 4 von 35 | 11. Mai 2017

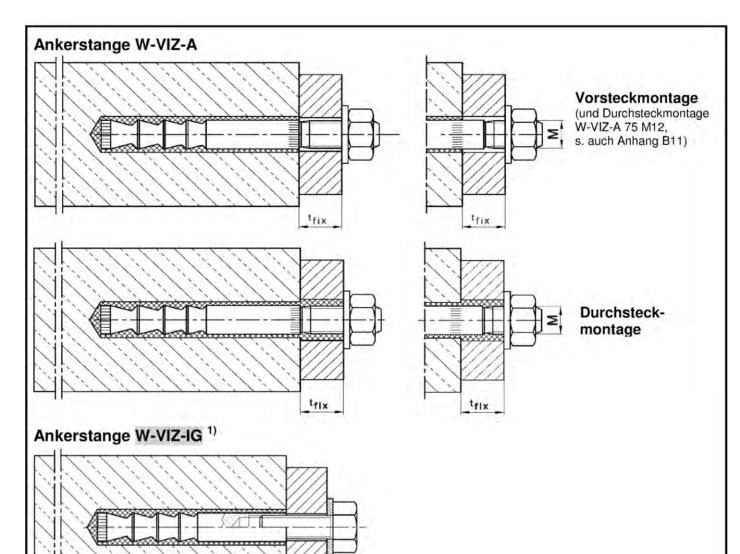
3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß der Leitlinie für die europäisch technische Zulassung ETAG 001, April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, gilt folgende Rechtsgrundlage: [96/582/EG].

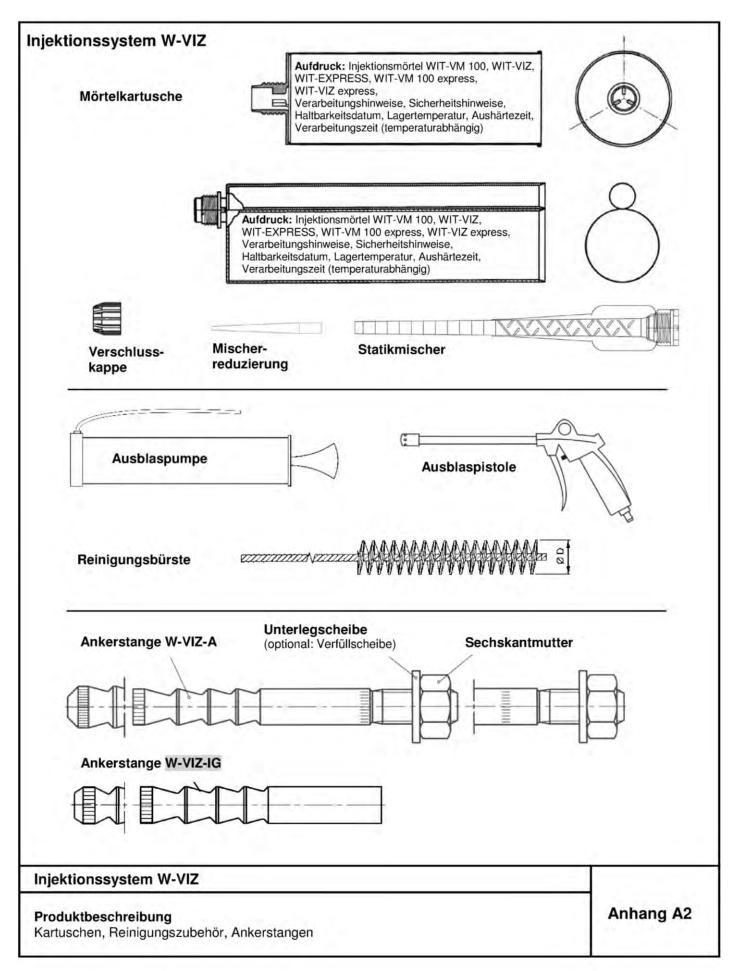
Folgendes System ist anzuwenden: 1


Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

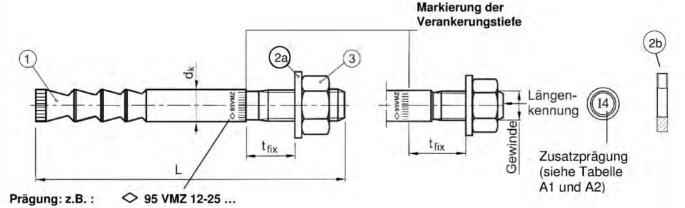
Ausgestellt in Berlin am 11. Mai 2017 vom Deutschen Institut für Bautechnik

Andreas Kummerow Beglaubigt:
Abteilungsleiter


tfix

Dübeltyp	Produktbeschreibung	Verwendungszweck	Leistung
W-VIZ-A	Anhang A1 – Anhang A4	Anhang B1 – Anhang B11	Anhang C1 – Anhang C9
W-VIZ-IG	Anhang A1 – Anhang A2; Anhang A5	Anhang B1 – Anhang B3; Anhang B12 – Anhang B14	Anhang C10 – Anhang C12

Injektionssystem W-VIZ	
Produktbeschreibung Einbauzustand	Anhang A1


¹⁾ Abbildung beispielhaft mit Sechskantschraube; Befestigung auch mit anderen Schrauben oder mit Gewindestangen möglich (s. Anhang A5, Anforderungen an die Befestigungsschraube bzw. Gewindestange)

Prägung

Werkzeichen

95 Verankerungstiefe

VMZ Handelsname
12 Gewindegröße

25 Maximale Befestigungsdicke (bei Verwendung von U-Scheibe 2a)

A4 zusätzliche Kennung für nichtrostenden Stahl A4

HCR zusätzliche Kennung für hochkorrosionsbeständigen Stahl HCR

Längenkennung	В	С	D	E	F	G	Н		J	K	L	M
Dübellänge min ≥	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5
Dübellänge max <	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2

Längenkennung	N	0	Р	Q	R	S	T	U	٧	W	Х	Υ	Z	>Z
Dübellänge min ≥	203,2	215,9	228,6	241,3	254,0	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2	482,6
Dübellänge max <	215,9	228,6	241,3	254,0	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2	482,6	

Tabelle A1: Abmessungen Ankerstangen, W-VIZ-A M8 – M12

	Dübelgröße '	W-VIZ-A	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
	Zusatzprägun	ng	1	2	1	2	1	2	3	4	5	6	7
1.	Ankerstange	Gewinde	M8 M10 M					M12					
		Konus- anzahl	2	3	3	3	3	3	4	4	6	6	6
		d _k =	8,0	8,0	9,7	9,7	10,7	12,5	12,5	12,5	12,5	12,5	12,5
	Länge L (mit Unterlegscheibe 2a)		52+t _{fix}	63+t _{fix}	75+t _{fix}	90+t _{fix}	95+t _{fix}	90+t _{fix}	100 +t _{fix}	115 +t _{fix}	120 +t _{fix}	130 +t _{fix}	145 +t _{fix}
	Re (mit Ve	3,4	3,4	3	3	2,5	2,5	2,5	2,5	2,5	2,5	2,5	
3	Sechskantmu	utter SW	13	13	17	17	19	19	19	19	19	19	19

Bei Verwendung der Verfüllscheibe (2b) reduziert sich die Klemmstärke um den angegebenen Wert

Maße in mm

Injektionssystem W-VIZ

Produktbeschreibung

Dübelteile, Prägung, Abmessungen W-VIZ-A M8 – M12

Anhang A3

Tabelle A2: Abmessungen Ankerstangen, W-VIZ-A M16 – M24

	Dübelgröße W-VIZ-A		90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
	Zusatzprä	1	2	3	4	5	1	2	3	1	2	3	
1	Anker- stange	Gewinde			M16				M20			M24	
l		Konus- anzahl	3	4	6	6	6	3	6	6	6	6	6
ı		d _k =	16,5	16,5	16,5	16,5	16,5	19,7	22,0	22,0	24,0	24,0	24,0
ı	Länge L		114	129	150	170	185	143	203	223	210	240	265
ı	(mit Unterlegscheibe 2a)		+t _{fix}	$+t_{fix}$	+t _{fix}	+t _{fix}	$+t_{fix}$	+t _{fix}	$+t_{fix}$				
L	Reduktion t _{fix} 1) (mit Verfüllscheibe 2b)		2	2	2	2	2	2	2	2	1	1	1
3	Sechskant	tmutter SW	24	24	24	24	24	30	30	30	36	36	36

Bei Verwendung der Verfüllscheibe (2b) reduziert sich die Klemmstärke um den angegebenen Wert

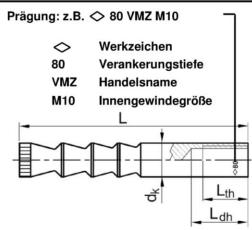

Maße in mm

Tabelle A3: Werkstoffe W-VIZ-A

			Stahl, verzinkt	a T		Hochkorrosions-
Teil	Benennung	galvanisch verzinkt	feuerverzinkt ≥ 40μm	diffusions- verzinkt ≥ 40µm	Nichtrostender Stahl A4	beständiger Stahl (HCR)
1	Ankerstange	Stahl nach EN 10087:1998, galvanisch verzinkt und beschichtet	Stahl nach EN 10087:1998, feuerverzinkt und beschichtet	Stahl nach EN 10087:1998, diffusionsverzinkt und beschichtet	Nichtrostender Stahl, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088:2005, beschichtet	Hochkorrosions- beständiger Stahl 1.4529, 1.4565 nach EN 10088:2005, beschichtet
2a	Unterleg- scheibe	Stahl, verzinkt	Stahl, verzinkt	Stahl, verzinkt	Nichtrostender Stahl,	Hochkorrosions- beständiger Stahl
2b	Verfüllscheibe	(15)	Otarii, verzirikt	Otarii, verziiikt	1.4401, 1.4571, EN 10088:2005	1.4529 oder 1.4565, nach EN 10088:2005
3	Sechskant- mutter	Festigkeits- klasse 8 nach EN ISO 898- 2:2012-08, galvanisch verzinkt	Festigkeits- klasse 8 nach EN ISO 898-2:2012-08, feuerverzinkt	Festigkeitsklasse 8 nach EN ISO 898-2:2012-08, diffusionsverzinkt oder feuerverzinkt	ISO 3506:2009, A4-70, 1.4401, 1.4571, EN 10088:2005	ISO 3506:2009, Festigkeitsklasse 70, Hochkorrosions- beständiger Stahl 1.4529 oder 1.4565, EN 10088:2005
4	Mörtel Kartusche	Vinylesterharz, s	tyrolfrei, Mischunç	gsverhältnis 1:10		

Injektionssystem W-VIZ	
Produktbeschreibung Abmessungen W-VIZ-A M16 – M24, Werkstoffe W-VIZ-A	Anhang A4

A4 zusätzliche Kennung für nichtrostenden Stahl A4

HCR zusätzliche Kennung für hochkorrosionsbeständigen Stahl HCR

Tabelle A4: Abmessungen Ankerstange W-VIZ-IG

Dübelgröße W-VIZ-IG	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20	
Innengewinde	-	N	16	M	18	М	10		M12		M.	16	M20
Konusanzahl	-	2	3	3	3	3	4	3	4	6	3	6	6
Außendurchmesser d _k	[mm]	8,0	8,0	9,7	10,7	12,5	12,5	16,5	16,5	16,5	19,7	22,0	24,0
Gewindelänge L _{th}	[mm]	12	15	16	19	20	23	24	27	30	32	32	40
Gesamtlänge L	[mm]	41	52	63	78	74	84	94	109	130	120	180	182
Längenkennung	[mm]	L _{dh} < 18	L _{dh} > 19	L _{dh} < 22,5	L _{dh} > 23,5	L _{dh} < 27	L _{dh} > 28	L _{dh} < 31,5	32,5 < L _{dh} < 34,5	L _{dh} > 35,5	d _k < 21	d _k > 21	-

Tabelle A5: Werkstoffe W-VIZ-IG

		Stahl,	verzinkt	Nichtrostender Stahl	Hochkorrosions-
Teil	Benennung	galvanisch verzinkt	diffusionsverzinkt ≥ 40µm	A4	beständiger Stahl (HCR)
1	Ankerstange	Stahl nach EN 10087:1998, galvanisch verzinkt und beschichtet	Stahl nach EN 10087:1998, diffusionsverzinkt und beschichtet	Nichtrostender Stahl, 1.4401, 1.4404, 1.4571, 1.4362 nach EN 10088:2005, be- schichtet	Hochkorrosions- beständiger Stahl 1.4529, 1.4565 nach EN 10088: 2005, beschichtet
4	Mörtel Kartusche		Vinylesterharz, styre	olfrei, Mischungsverhältnis	3 1:10

Anforderungen an die Befestigungsschraube bzw. an die Gewindestange und Mutter

- Minimale Einschraubtiefe L_{sdmin} siehe Tabelle B7
- Die Länge der Schraube bzw. der Gewindestange muss in Abhängigkeit von der Anbauteildicke t_{fix}, der vorhandenen Gewindelänge L_{th} (= maximale Einschraubtiefe, siehe Tabelle B7) und der minimalen Einschraubtiefe L_{sdmin} festgelegt werden.
- A₅ > 8 % Duktilität

Stahl verzinkt:

Minimale Festigkeitsklasse 8.8, nach EN ISO 898-1:2013 bzw. EN ISO 898-2:2012

Nichtrostender Stahl A4: Werkstoff 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 nach EN 10088:2005 Minimale Festigkeitsklasse 70 nach EN ISO 3506:2009

Hochkorrosionsbeständiger Stahl (HCR): Werkstoff 1.4529; 1.4565 nach EN 10088:2005 Minimale Festigkeitsklasse 70 nach EN ISO 3506:2009

Injektionssystem W-VIZ	
Produktbeschreibung Dübelteile, Abmessungen, Werkstoffe W-VIZ-IG	Anhang A5

Injektionssystem W-	VIZ-A	M8	M10	M12	M16	M20	M24		
Statische oder quasi-sta	atische Einwirkung			,	/				
Seismische Einwirkung	(Kategorie C1 + C2)	-	✓	✓	✓	✓	✓		
Gerissener und ungeris	sener Beton			,	/				
Festigkeitsklasse nach	EN 206-1:2000 C20/25 bis C50/60			,	/				
Bewehrter oder unbewenach EN 206-1:2000	ehrter Normalbeton	✓							
Temperaturbereich I	-40 °C bis +80 °C	maximale Langzeittemperatur +50 °C							
Temperaturbereich II	-40 °C bis +120 °C	maximale Kurzzeittemperatur +120 °C und maximale Langzeittemperatur +72 °C							
	Hammerbohrer	√							
Bohrlocherstellung mit	Saugbohrer ¹⁾	-	✓	✓	✓	✓	✓		
	Diamantbohrer (seismische Einwirkung ausgeschlossen)	-	✓	✓	✓	✓	✓		
	trockenen Beton	✓							
Montage zulässig im	nassen Beton	✓							
	wassergefüllten Bohrloch	-	-	√ ²⁾	✓	✓	✓		
Überkopfmontage zuläs	ssig	✓	✓	✓	✓	✓	✓		

z.B. Würth Saugbohrer, MKT Saugbohrer oder Heller Duster Expert
 Ausnahme: W-VIZ-A 75 M12 (Montage im wassergefüllten Bohrloch nicht zulässig)

Injektionssystem W-	/IZ-IG	М6	M8	M10	M12	M16	M20		
Statische oder quasi-sta	atische Einwirkung	√							
Seismische Einwirkung	(Kategorie C1 + C2)								
Gerissener und ungeris	sener Beton			,					
Festigkeitsklasse nach	EN 206-1:2000 C20/25 bis C50/60			•					
Bewehrter oder unbewe nach EN 206-1:2000	ehrter Normalbeton			٧	/				
Temperaturbereich I	-40 °C bis +80 °C	maximale Kurzzeittemperatur +80 °C und maximale Langzeittemperatur +50 °C							
Temperaturbereich II	-40 °C bis +120 °C	maximale Kurzzeittemperatur +120 °C und maximale Langzeittemperatur +72 °C							
	Hammerbohrer	✓							
Bohrlocherstellung mit	Saugbohrer ¹⁾	-	✓	✓	✓	✓	✓		
	Diamantbohrer (seismische Einwirkung ausgeschlossen)	-	✓	✓	✓	✓	✓		
	trockenen Beton	√							
Montage zulässig im	nassen Beton	✓							
	wassergefüllten Bohrloch	-	-	✓	✓	✓	✓		
Überkopfmontage zuläs	sig	✓	✓	✓	✓	✓	✓		

¹⁾ z.B. Würth Saugbohrer, MKT Saugbohrer oder Heller Duster Expert

Injektionssystem W-VIZ	
Verwendungszweck Spezifikationen und Anwendungsbedingungen	Anhang B1

Spezifizierung des Verwendungszwecks

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien, einschließlich Industrieatmosphäre und Meeresnähe oder Bauteile in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl).

Bemerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Bemessung von Verankerungen unter statischer oder quasi-statischer Einwirkung nach:
 - ETAG 001, Anhang C, Bemessungsmethode A, Edition August 2010 oder
 - CEN/TS 1992-4:2009, Bemessungsmethode A
- Bemessung von Verankerungen unter seismischer Einwirkung (gerissener Beton) nach:
 - EOTA Technischer Report TR 045, Ausgabe Februar 2013
 - Die Verankerungen sind außerhalb kritischer Bereiche (z.B.: plastischer Gelenke) der Betonkonstruktion anzuordnen.
 - Eine Abstandsmontage oder die Montage auf Mörtelschicht ist für seismische Einwirkungen nicht erlaubt.

Einbau:

- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters.
- Bei Fehlbohrungen sind diese zu vermörteln.
- Das Bohrloch ist unmittelbar vor der Montage des Ankers zu reinigen oder das Bohrloch ist nach der Reinigung bis zum Injizieren des Mörtels in geeigneter Weise vor Verschmutzung zu schützen.
- Wassergefüllte Bohrlöcher (sofern zulässig) dürfen nicht verschmutzt sein andernfalls Bohrlochreinigung wiederholen.
- Die Temperatur der Dübelteile beim Einbau beträgt mindestens +5 °C; die Temperatur im Verankerungsgrund während der Aushärtung des Injektionsmörtels unterschreitet nicht -5 °C; Belastung erst nach Ablauf der angegebenen Aushärtezeit.
- Es ist sicherzustellen, dass kein Eisansatz im Bohrloch entsteht.
- Optional kann der Ringspalt zwischen Ankerstange und Anbauteil unter Verwendung der Verfüllscheibe (Teil 2b, Anhang A3) anstatt der U-Scheibe (Teil 2a, Anhang A3) mit Injektionsmörtel WIT-VM 100, WIT-VIZ, WIT-EXPRESS, WIT-VM 100 express oder WIT-VIZ express verfüllt werden.

Verwendungszweck
Spezifikationen

Injektionssystem W-VIZ

Anhang B2

Tabelle B1: Verarbeitungs- und Aushärtezeit WIT-VM 100, WIT-VIZ

Temperatur	Maximale	Minimale Au	ıshärtezeit
im Bohrloch	Verarbeitungszeit	Trockener Beton	Nasser Beton
+ 40 °C	1,4 min	15 min	30 min
+ 35 °C bis + 39 °C	1,4 min	20 min	40 min
+ 30 °C bis + 34 °C	2 min	25 min	50 min
+ 20 °C bis + 29 °C	4 min	45 min	1:30 h
+ 10 °C bis + 19 °C	6 min	1:20 h	2:40 h
+ 5 °C bis + 9 °C	12 min	2:00 h	4:00 h
0 °C bis + 4 °C	20 min	3:00 h	6:00 h
- 4 °C bis - 1 °C	45 min	6:00 h	12:00 h
- 5 °C	1:30 h	6:00 h	12:00 h

Tabelle B2: Verarbeitungs- und Aushärtezeit WIT-EXPRESS, WIT-VM 100 express, WIT-VIZ express

Temperatur	Maximale	Minimale Aushärtezeit							
im Bohrloch	Verarbeitungszeit	Trockener Beton	Nasser Beton						
+ 30 °C	1 min	10 min	20 min						
+ 20 °C bis + 29 °C	1 min	20 min	40 min						
+ 10 °C bis + 19 °C	3 min	40 min	80 min						
+ 5 °C bis + 9 °C	6 min	1:00 h	2:00 h						
0 °C bis + 4 °C	10 min	2:00 h	4:00 h						
- 4 °C bis - 1 °C	20 min	4:00 h	8:00 h						
- 5 °C	40 min	4:00 h	8:00 h						

Verwendungszweck
Verarbeitungs- und Aushärtezeit

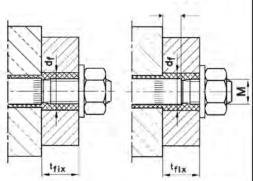
Anhang B3

Tabelle B3:	Montagekennwerte,	W-VIZ-A	M8 - M12
-------------	-------------------	---------	----------

Dübelgröße W-VIZ-A			40 M8		60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Verankerungstiefe	h _{et} ≥	[mm]	40	50	60	75	75	70	80	95	100	110	125
Bohrernenndurchmesser	d ₀ =	[mm]	10	10	12	12	12	14	14	14	14	14	14
Bohrlochtiefe	h ₀ ≥	[mm]	42	55	65	80	80	75	85	100	105	115	130
Bürstendurchmesser	D≥	[mm]	10,8	10,8	13,0	13,0	13,0	15,0	15,0	15,0	15,0	15,0	15,0
Drehmoment beim Verankern	T _{inst} ≤	[Nm]	10	10	15	15	25	25	25	25	30	30	30
Durchgangsloch im anzuschlie	Benden	Bautei	1										
Vorsteckmontage	d₁≤	[mm]	9	9	12	12	14	14	14	14	14	14	14
Durchsteckmontage	d₁ ≤	[mm]	131	14	14	14	14 ¹⁾ /	16	16	16	16	16	16

¹⁾ Siehe Anhang B11

Tabelle B4: Montagekennwerte, W-VIZ-A M16 – M24


Dübelgröße W-VIZ-A		90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)	
Verankerungstiefe	h _{ef} ≥	[mm]	90	105	125	145	160	115	170	190	170	200	225
Bohrernenndurchmesser	$d_0 =$	[mm]	18	18	18	18	18	22	24	24	26	26	26
Bohrlochtiefe	h ₀ ≥	[mm]	98	113	133	153	168	120	180	200	185	215	240
Bürstendurchmesser	D≥	[mm]	19,0	19,0	19,0	19,0	19,0	23,0	25,0	25,0	27,0	27,0	27,0
Drehmoment beim Verankern	T _{inst} ≤	[Nm]	50	50	50	50	50	80	80	80	100	120	120
Durchgangsloch im anzuschlie	ßenden	Baute	il										
Vorsteckmontage	d₁≤	[mm]	18	18	18	18	18	22	24 (22)	24 (22)	26	26	26
Durchsteckmontage	d₁ ≤	[mm]	20	20	20	20	20	24	26	26	28	28	28

Vorsteckmontage Größe M20 + M24 ≥ 0,5 t_{fix}

Durchsteckmontage

Größe M20 + M24

≥ 0,5 t_{fix}

Ringspalt zwischen Ankerstange und Anbauteil muss vollständig vermörtelt sein!

Injektionssystem W-VIZ

Verwendungszweck Montagekennwerte W-VIZ-A Anhang B4

Tabelle B5: Mindestachs- und Randabstände, W-VIZ-A M8 – M12

Dübelgröße W-VIZ-A			40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Mindestbauteildicke	h _{min}	[mm]	80	80	100	110 100 ¹⁾	110	110	110	130 125 ¹⁾	130	140	160
Gerissener Beton													
Minimaler Achsabstand	Smin	[mm]	40	40	40	40	50	55	40	40	50	50	50
Minimaler Randabstand	C _{min}	[mm]	40	40	40	40	50	55	50	50	50	50	50
Ungerissener Beton													
Minimaler Achsabstand	Smin	[mm]	40	40	50	50	50	55	55	55	80 ²⁾	80 ²⁾	80 ²⁾
Minimaler Randabstand	C _{min}	[mm]	40	40	50	50	50	55	55	55	55 ²⁾	55 ²⁾	55 ²⁾

Tabelle B6: Mindestachs- und Randabstände, W-VIZ-A M16 – M24

Dübelgröße W-VIZ-A			90 M16	105 M16	125 M16	145 M 16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Mindestbauteildicke	h _{min}	[mm]	130	150	170 160 ¹⁾	190 180 ¹⁾	205 200 ¹⁾	160	230 220 ¹⁾	250 240 1)	230 220 1)	270 260 ¹⁾	300 290 ¹⁾
Gerissener Beton													
Minimaler Achsabstand	S _{min}	[mm]	50	50	60	60	60	80	80	80	80	80	80
Minimaler Randabstand	C _{min}	[mm]	50	50	60	60	60	80	80	80	80	80	80
Ungerissener Beton	Ungerissener Beton												
Minimaler Achsabstand	S _{min}	[mm]	50	60	60	60	60	80	80	80	80	105	105
Minimaler Randabstand	C _{min}	[mm]	50	60	60	60	60	80	80	80	80	105	105

Die Rückseite des Betonbauteils soll nach dem Bohren auf Beschädigungen untersucht werden. Im Falle von Durchbohrungen müssen diese mit hochfestem Mörtel verschlossen werden. Die volle Verankerungstiefe h_{ef} ist einzuhalten und ein potentieller Mörtelverlust muss ausgeglichen werden.

Verwendungszweck
Mindestachs- und Randabstände, W-VIZ-A

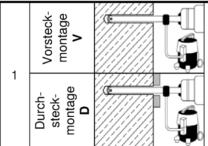
Anhang B5

 $^{^{2)}}$ Für Randabstand c \geq 80 mm, minimaler Achsabstand s_{min} = 55 mm.

Montageanweisung W-VIZ-A Bohrlocherstellung und Reinigung (Hammerbohrer) Vor-steck-montage Bohrloch senkrecht zur Oberfläche des Verankerungsgrunds mit Hammerbohrer 1 oder Pressluftbohrer erstellen. Durch-steck-montage W-VIZ-A M8 - M16: Bohrloch vom Grund her mit Ausblaspumpe mindestens zweimal ausblasen. Bei der Größe M8 muss der Reduzierschlauch für die Ausblaspumpe verwendet werden. min. 6 bar 2x W-VIZ-A M20 - M24: Ausblaspistole an Druckluft (min. 6 bar, ölfrei) anschließen. Ventil öffnen und Bohrloch entlang der gesamten Tiefe in einer Vor- und Rückwärtsbewegung mindestens zweimal ausblasen. 2 W-VIZ-A M10 - M16: Bohrloch vom Grund her mit Ausblaspumpe mindestens zweimal ausblasen. M10 - M16 min. 6 bar 2x W-VIZ-A M20 - M24: Ausblaspistole an Druckluft (min. 6 bar, ölfrei) anschließen. Ventil öffnen und Bohrloch entlang der gesamten Tiefe in einer Vor- und Rückwärtsbewegung mindestens zweimal ausblasen. Durchmesser der Reinigungsbürste kontrollieren. Wenn die Bürste sich ohne Widerstand in das Bohrloch schieben lässt, neue Bürste verwenden. Bürste in 3 Bohrmaschine einspannen. Bohrmaschine einschalten und erst dann mit rotierender Bürste das Bohrloch bis zum Grund in einer Vor- und Rückwärtsbewegung mindestens zweimal ausbürsten. W-VIZ-A M8 - M16: Bohrloch vom Grund her mit Ausblaspumpe mindestens zweimal ausblasen. Bei der Größe M8 muss der Reduzierschlauch für die Ausblaspumpe verwendet werden. min. 6 bar 2x W-VIZ-A M20 - M24: Ausblaspistole an Druckluft (min. 6 bar, ölfrei) anschließen. Ventil öffnen und Bohrloch entlang der gesamten Tiefe in einer Vor- und Rückwärtsbewegung mindestens zweimal ausblasen. 4 W-VIZ-A M10 - M16: Bohrloch vom Grund her mit Ausblaspumpe mindestens zweimal ausblasen. M10 - M16 W-VIZ-A M20 - M24: Ausblaspistole an Druckluft (min. 6 bar, ölfrei) anschließen. Ventil öffnen und Bohrloch entlang der gesamten Tiefe in einer Vor- und Rückwärtsbewegung mindestens zweimal ausblasen.

Injektionssystem W-VIZ

Verwendungszweck


Montageanweisung W-VIZ-A

Bohrlocherstellung und Reinigung (Hammerbohrer)

Anhang B6

Bohrlocherstellung und Reinigung (Saugbohrer)

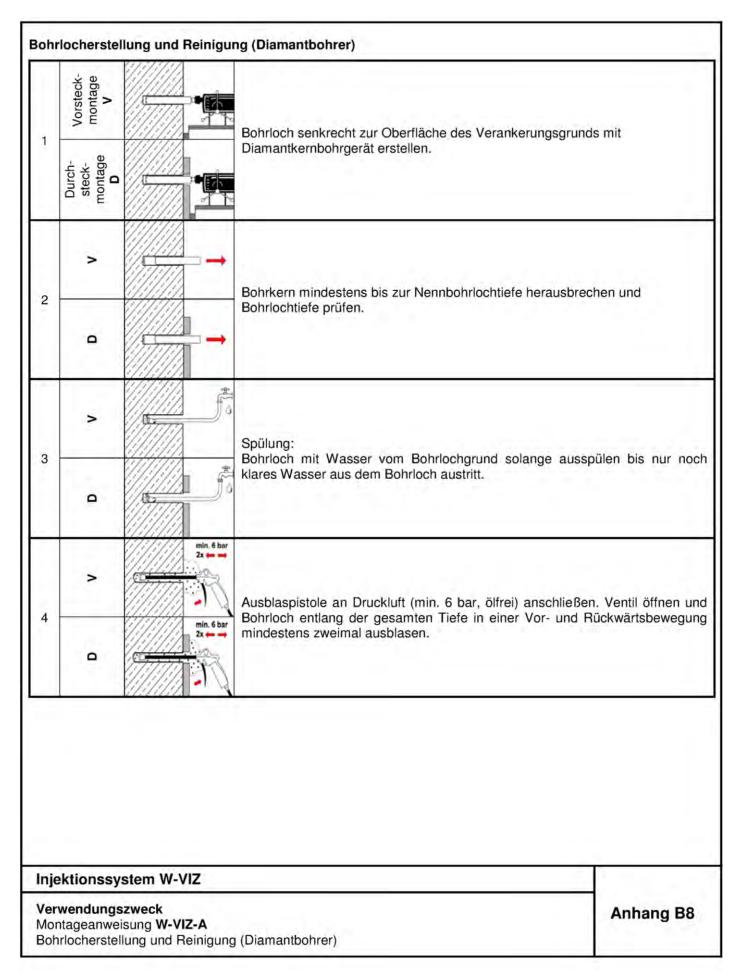
Bohrloch senkrecht zur Oberfläche des Verankerungsgrundes mit Saugbohrer (siehe Anhang B1) erstellen.

Es ist ein Staubabsaugsystem mit einem Nennunterdruck von mindestens 230mbar / 23kPa zu verwenden.

Auf die Funktion der Staubabsaugung ist zu achten! Das Absaugsystem muss den Bohrstaub während des gesamten Bohrvorgangs konstant absaugen.

Es ist keine weitere Reinigung notwendig, weiter bei Schritt 5!

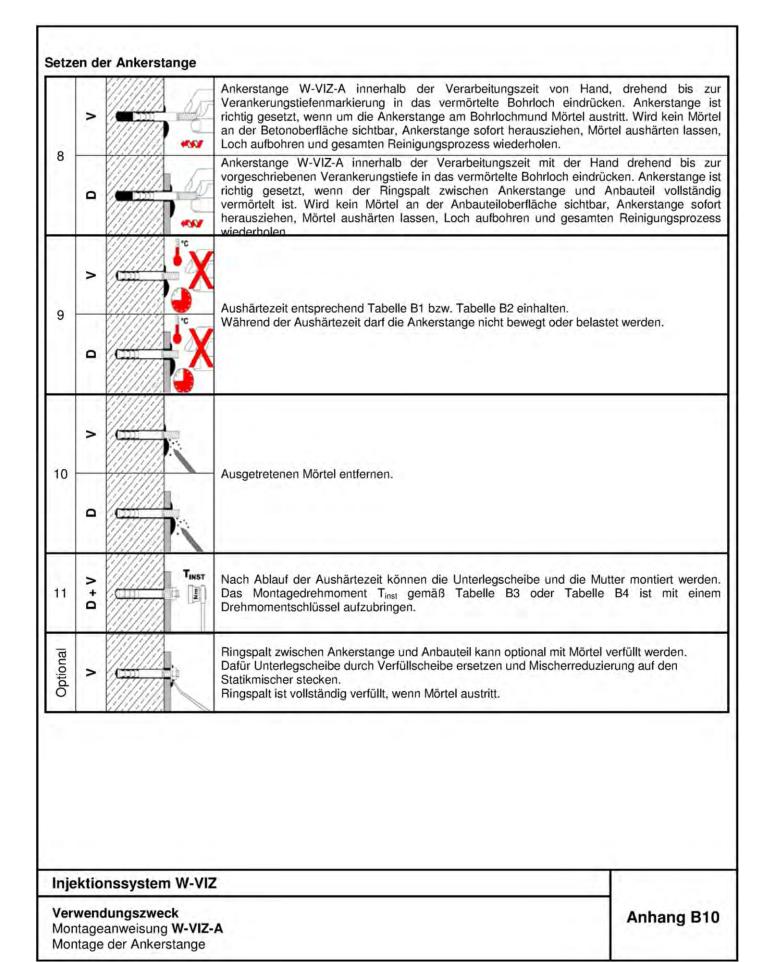
Injektionssystem W-VIZ


Verwendungszweck

Montageanweisung W-VIZ-A

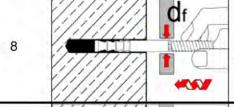
Bohrlocherstellung und Reinigung (Saugbohrer)

Anhang B7

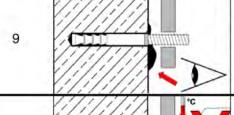


Verfüllen des Bohrlochs Mindesthaltbarkeitsdatum auf Mörtelkartusche überprüfen. Niemals abgelaufenen Mörtel verwenden. Verschlusskappe von Mörtelkartusche entfernen und Statikmischer auf 5 Mörtelkartusche aufschrauben. Für jede neue Kartusche einen neuen Statikmischer verwenden. Kartusche niemals ohne Statikmischer und Statikmischer niemals ohne Mischwendel verwenden. Mörtelkartusche in Auspresspistole einsetzen und Mörtelverlauf solange auspressen (ca. 2 6 volle Hübe oder einen ca. 10 cm langen Mörtelstrang), bis der austretende Injektionsmörtel eine gleichmäßig graue Farbe aufweist. Dieser Vorlauf darf nicht verwendet werden. Prüfen, ob Statikmischer bis zum Bohrlochgrund reicht. Falls nicht, Mischerverlängerung auf 7 Statikmischer stecken. Das gereinigte Bohrloch luftfrei vom Grund her mit ausreichend gemischtem Injektionsmörtel verfüllen.

Injektionssystem W-VIZ	
Verwendungszweck Montageanweisung W-VIZ-A	Anhang B9
Verfüllen des Bohrlochs	

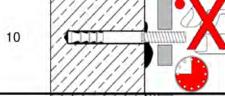


Montageanweisung W-VIZ-A 75 M12

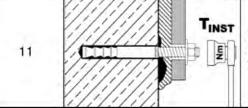

Durchsteckmontage mit Abstand des Anbauteils

Arbeitsschritte 1-7 wie in den Anhängen B6 - B9 dargestellt

Voraussetzung: Durchgangsloch im anzuschließenden Bauteil d₁ ≤ 14 mm



Ankerstange W-VIZ-A innerhalb der Verarbeitungszeit mit der Hand drehend bis zur vorgeschriebenen Verankerungstiefe in das vermörtelte Bohrloch eindrücken.



Kontrollieren, ob überschüssiger Mörtel am Bohrlochmund austritt. Wird kein Mörtel an der Betonoberfläche sichtbar, Ankerstange sofort herausziehen, Mörtel aushärten lassen, Loch aufbohren und gesamten Reinigungsprozess wiederholen.

Der Ringspalt im Anbauteil muss nicht vermörtelt sein.

Aushärtezeit entsprechend Tabelle B1 bzw. Tabelle B2 einhalten. Während der Aushärtezeit darf die Ankerstange nicht bewegt oder belastet werden.

Nach Ablauf der Aushärtezeit und Unterfütterung des Anbauteils Unterlegscheibe und Mutter montieren. Montagedrehmoment T_{inst} gemäß Tabelle B3 mit Drehmomentschlüssel aufbringen.

Injektionssystem W-VIZ

Verwendungszweck

Montageanweisung W-VIZ-A 75 M12

Durchsteckmontage mit Abstand des Anbauteils

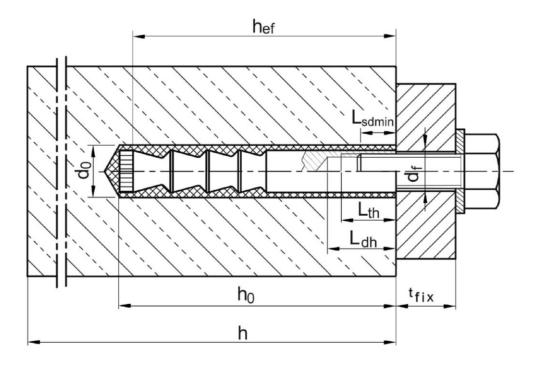
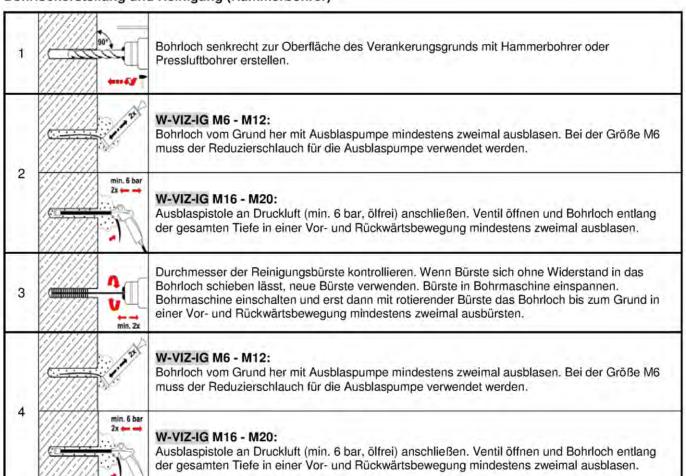

Anhang B11

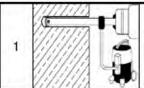
Tabelle B7: Montage- und Dübelkennwerte W-VIZ-IG

Dübelgröße W-VIZ-IG			40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Verankerungstiefe	h _{ef} =	[mm]	40	50	60	75	70	80	90	105	125	115	170	170
Bohrernenndurchmesser	d ₀ =	[mm]	10	10	12	12	14	14	18	18	18	22	24	26
Bohrlochtiefe	$h_0\geq$	[mm]	42	55	65	80	80	85	98	113	133	120	180	185
Bürstendurchmesser	D≥	[mm]	10,8	10,8	13,0	13,0	15,0	15,0	19,0	19,0	19,0	23,0	25,0	27,0
Drehmoment	T _{inst} ≤	[Nm]	8	8	10	10	15	15	25	25	25	50	50	80
Durchgangsloch im anzuschließenden Bauteil	$d_{f} \leq$	[mm]	7	7	9	9	12	12	14	14	14	18	18	22
Gewindelänge	L_{th}	[mm]	12	15	16	19	20	23	24	27	30	32	32	40
Mindesteinschraubtiefe	L _{sdmin}	[mm]	7	7	9	9	12	12	14	14	14	18	18	22
Mindestbauteildicke	h _{min}	[mm]	80	80	100	110	110	110	130	150	170 160 ¹⁾	160	230 220 ¹⁾	230 220 ¹⁾
Gerissener Beton														
Minimaler Achsabstand	S _{min}	[mm]	40	40	40	40	55	40	50	50	60	80	80	80
Minimaler Randabstand	C _{min}	[mm]	40	40	40	40	55	50	50	50	60	80	80	80
Ungerissener Beton														
Minimaler Achsabstand	S _{min}	[mm]	40	40	50	50	55	55	50	60	60	80	80	80
Minimaler Randabstand	C _{min}	[mm]	40	40	50	50	55	55	50	60	60	80	80	80

Die Rückseite des Betonbauteils soll nach dem Bohren auf Beschädigungen untersucht werden. Im Falle von Durchbohrungen müssen diese mit hochfestem Mörtel verschlossen werden. Die volle Verankerungstiefe h_{ef} ist einzuhalten und ein potentieller Mörtelverlust muss ausgeglichen werden.



Injektionssystem W-VIZ	
Verwendungszweck Montage- und Dübelkennwerte W-VIZ-IG	Anhang B12



Montageanweisung W-VIZ-IG

Bohrlocherstellung und Reinigung (Hammerbohrer)

Bohrlocherstellung und Reinigung (Saugbohrer)

Bohrloch senkrecht zur Oberfläche des Verankerungsgrundes mit Saugbohrer (siehe Anhang B1) erstellen. Es ist ein Staubabsaugsystem mit einem Nennunterdruck von mindestens 230mbar / 23kPa zu verwenden.

Auf die Funktion der Staubabsaugung ist zu achten! Das Absaugsystem muss den Bohrstaub während des gesamten Bohrvorgangs konstant absaugen.

Es ist keine weitere Reinigung notwendig, weiter bei Schritt 5!

Injektionssystem W-VIZ Verwendungszweck Montageanweisung W-VIZ-IG Bohrlocherstellung und Reinigung (Hammer- und Saugbohrer) Anhang B13

ohr	locherstellung ur	nd Reinigung (Diamantbohrer)	
1	•	Bohrloch senkrecht zur Oberfläche des Verankerungsgrunds mit Diamantkern erstellen.	bohrgerät
2	→	Bohrkern mindestens bis zur Nennbohrlochtiefe herausbrechen und Bohrlocht	tiefe prüfen.
3		Spülung: Bohrloch mit Wasser vom Bohrlochgrund solange ausspülen, bis nu Wasser aus dem Bohrloch austritt.	r noch klares
4	min. 6 bar 2x -	Ausblaspistole an Druckluft (min. 6 bar, ölfrei) anschließen. Ventil öffnen und der gesamten Tiefe in einer Vor- und Rückwärtsbewegung mindestens zweim	
erfi	illen des Bohrloc	hs	
5	A TON	Mindesthaltbarkeitsdatum auf Mörtelkartusche überprüfen. Niemals abg verwenden. Verschlusskappe von Mörtelkartusche entfernen und S Mörtelkartusche aufschrauben. Für jede neue Kartusche einen neuen Statikm Kartusche niemals ohne Statikmischer und Statikmischer niemals ohne Mischw	Statikmischer auf nischer verwenden.
6	min. 2x	Mörtelkartusche in Auspresspistole einsetzen und Mörtelverlauf solange ausp Hübe oder einen ca. 10 cm langen Mörtelstrang), bis der austretende Inj gleichmäßig graue Farbe aufweist. Dieser Vorlauf darf nicht verwendet werden	ektionsmörtel eine
7		Prüfen, ob Statikmischer bis zum Bohrlochgrund reicht. Falls nicht, Mische Statikmischer stecken. Das gereinigte Bohrloch luftfrei vom Grund her gemischtem Injektionsmörtel verfüllen.	
etze	en der Ankerstan	ge	
8	- 65- 	Ankerstange W-VIZ-IG innerhalb der Verarbeitungszeit von Hand, drehend bei die Betonoberfläche in das vermörtelte Bohrloch eindrücken. Ankerstange wenn am Bohrlochmund ringsum Mörtel austritt. Wird kein Mörtel an de sichtbar, Ankerstange sofort herausziehen, Mörtel aushärten lassen, Loch aufbo Reinigungsprozess wiederholen.	ist richtig gesetzt, er Betonoberfläche
9	X	Aushärtezeit entsprechend Tabelle B1 bzw. B2 einhalten. Während der Au Ankerstange nicht bewegt oder belastet werden.	shärtezeit darf die
10		Ausgetretenen Mörtel entfernen.	
11	T _{inst}	Nach der Aushärtezeit kann das Anbauteil montiert werden. Das Montag gemäß Tabelle B7 ist mit einem Drehmomentschlüssel aufzubringen.	edrehmoment T _{inst}
Inje	ektionssystem V	V-VIZ	
Ver Mor Boh	wendungszweck ntageanweisung W		Anhang B14

Tabelle C1: Charakteristische Werte bei Zugbeanspruchung, W-VIZ-A M8 – M12, gerissener Beton, statische oder quasi-statische Belastung

					_	_			_				
Dübelgröße W-VIZ-A								70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Montagesicherheitsbeiwert	[-]	1,0											
Stahlversagen													
Charakteristische	Stahl, verzinkt	[kN]	15	18	2	5	35	49	5	4		57	
Zugtragfähigkeit N _{Rk,s}	A4, HCR	[kN]	15	18	2	5	35	49	5	4		57	
Teilsicherheitsbeiwert	γMs	[-]						1,5					
Herausziehen													
Charakteristische	50°C / 80°C ²⁾	[kN]						1)					
Tragfähigkeit N _{Rk,p} im Beton C20/25	72°C / 120°C ²⁾	[kN]	5	7,5	12	12	12	16	20	20	30	30	30
Erhöhungsfaktor	Ψ¢	[-]					$\left(\frac{f_{c}}{f_{c}}\right)$	ck,cube 25	0,5				
Betonausbruch													
Effektive Verankerungstiefe	h _{ef} ≥	[mm]	40	50	60	75	75	70	80	95	100	110	125
Faktor gemäß CEN/TS 1992-4	k _{cr}	[-]						7,2					

¹⁾ Herausziehen ist nicht maßgebend.

Tabelle C2: Charakteristische Werte bei Zugbeanspruchung, W-VIZ-A M16 – M24, gerissener Beton, statische oder quasi-statische Belastung

Dübelgröße W-VIZ-A			90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{inst}$	[-]						1,0					
Stahlversagen													
Charakteristische	Stahl, verzinkt	[kN]	88	95	11	1	97	96	18	8		222	
Zugtragfähigkeit N _{Rk,s}	A4, HCR	[kN]	88	95	11	1	97	114	16	5		194	
Teilsicherheitsbeiwert	γMs	[-]			1,5			1,68	1,	,5		1,5	
Herausziehen													
Charakteristische	50°C / 80°C ²⁾	[kN]						1)					
Tragfähigkeit N _{Rk,p} – im Beton C20/25	72°C / 120°C ²⁾	[kN]	25	30	5	0	51	30	6	0		75	
Erhöhungsfaktor	ψс	[-]					(-	$\frac{f_{ck,cube}}{25}$	0,5				
Betonausbruch													
Effektive Verankerungstiefe	h _{ef} ≥	[mm]	90	105	125	145	160	115	170	190	170	200	225
Faktor gemäß CEN/TS 199	aktor gemäß CEN/TS 1992-4 k _{cr} [-							7,2					

¹⁾ Herausziehen ist nicht maßgebend.

²⁾ Maximale Langzeittemperatur / Maximale Kurzzeittemperatur

Injektionssystem W-VIZ	
Leistung Charakteristische Werte bei Zugbeanspruchung, W-VIZ-A, gerissener Beton, statische oder quasi-statische Belastung	Anhang C1

²⁾ Maximale Langzeittemperatur / Maximale Kurzzeittemperatur

Tabelle C3: Charakteristische Werte bei Zugbeanspruchung, W-VIZ-A M8 – M12, ungerissener Beton, statische oder quasi-statische Belastung

M8 M8 M10 M12	110 125 M12 M12 57
Stahlversagen Charakteristische Zugtragfähigkeit N _{Rk,s} Stahl, verzinkt [kN] 15 18 25 35 49 54 A4, HCR [kN] 15 18 25 35 49 54	
Charakteristische Zugtragfähigkeit N _{Rk,s} Stahl, verzinkt [kN] 15 18 25 35 49 54 A4, HCR [kN] 15 18 25 35 49 54	
Zugtragfähigkeit N _{Rk,s} A4, HCR [kN] 15 18 25 35 49 54	
74, 11011 [111] 10 10 20 00 40 04	57
Teilsicherheitsbeiwert γ_{Ms} [-] 1,5	
Herausziehen	
	50 50
N _{Rk,p} im ungerissenen Beton C20/25 72°C / 120°C ²⁾ [kN] 6 9 16 16 16 25 25 30	30 30
Spalten	
Spalten bei Standardbauteildicke (Der höhere Widerstand aus Fall 1 und Fall 2 darf angesetzt werden)	
	220 250
Fall 1 (N ⁰ _{Rk,c} wird ersetzt durch N ⁰ _{Rk,sp})	
Charakteristische Tragfähigkeit im ungerissenen Beton C20/25 N ⁰ _{Rk,sp} [kN] 7,5 9 16 20 20 1) 30 40	40 40
Achsabstand (Randabstand) $s_{cr,sp}$ (= 2 $c_{cr,sp}$) [mm] 3 h_{ef}	
Fall 2	
Achsabstand (Randabstand) $ s_{cr,sp} (= 2 c_{cr,sp}) [mm] 6 h_{ef} 5 h_{ef} 7 h_{ef} 7 h_{ef} 5 h_{ef} 3 h_{ef} 5 h_{ef} 4 h_{ef} 6 h_{ef} 6 h_{ef} 7 h_{ef} 7 h_{ef} 7 h_{ef} 8 $	6 h _{ef} 5 h _{ef}
Spalten bei Mindestbauteildicke (Der höhere Widerstand aus Fall 1 und Fall 2 darf angesetzt werden)	
$\label{eq:mindestbaute} \mbox{Mindestbauteildicke} \qquad \qquad \mbox{$h_{min} \geq $ [mm] $ 80 $ 100 $ 110 $ 110 $ 125 $ 130 $.}$	140 160
Fall 1 (N ⁰ _{Rk,c} wird ersetzt durch N ⁰ _{Rk,sp})	
Charakteristische Tragfähigkeit n ⁰ _{Rk,sp} [kN] 7,5 - 16 16 20 25 25 30 im ungerissenen Beton C20/25	30 30
Achsabstand (Randabstand) $s_{cr,sp}$ (= 2 $c_{cr,sp}$) [mm] 3 h_{ef} - 3 h_{ef}	
Fall 2	
Achsabstand (Randabstand) $ s_{cr,sp} (= 2 c_{cr,sp}) [mm] 6 h_{ef} 7 h_{ef} 6 h_{ef} 7 h_{ef} 7 h_{ef} 6 h_{ef} 7 h_{ef} 7 h_{ef} 9 h_$	6 h _{ef} 6 h _{ef}
Erhöhungsfaktor für $N_{Rk,p}$ und $N_{Rk,sp}^0$ ψc [-] $\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$	
Betonausbruch	
Effektive Verankerungstiefe $h_{ef} \ge [mm]$ 40 50 60 75 75 70 80 95 100	110 125
Faktor gemäß CEN/TS 1992-4	

¹⁾ Herausziehen ist nicht maßgebend.

Injektionssystem W-VIZ

Leistung

Charakteristische Werte bei **Zugbeanspruchung**, W-VIZ-A M8 – M12, ungerissener Beton, statische oder quasi-statische Belastung

Anhang C2

²⁾ Maximale Langzeittemperatur / Maximale Kurzzeittemperatur

Tabelle C4: Charakteristische Werte bei Zugbeanspruchung, W-VIZ-A M16 – M24, ungerissener Beton, statische oder quasi-statische Belastung

digerisserier beton, statiserie daer quasi statiserie belastarig												
	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)	
[-]						1,0						
kN]	88	95	111	111	97	96	188	188	222	222	222	
κN]	88	95	111	111	97	114	165	165	194	194	194	
[-]			1,5			1,68	1	,5		1,5		
κN]		1)		75	90		1)			1)		
κN]	25	35	50	50	53	40	75	75	95	95	95	
nere V	Vidersta	and aus	Fall 1 ur	nd Fall 2	darf and	jesetzt v	werden)					
nm]	180	200	250	290	320	230	340	380	340	400	450	
κN]	40	50	50	60	80	1)	115	1)	140	
nm]						3 h _{ef}						
nm]	4 h _{ef}	4 h _{ef}	4 h _{ef}	4 h _{ef}	4 h _{ef}	3 h _{ef}	3 h _{ef}	4 h _{ef}	3 h _{ef}	3 h _{ef}	3,6 h _{ef}	
re Wi	derstar	nd aus F	all 1 und	Fall 2 o	darf ange	setzt we	erden)					
nm]	130	150	160	180	200	160	220	240	220	260	290	
κN]	35	50	40	50	71	-	75	75	1)	115	115	
nm]						3 h _{ef}						
nm]	5 h _{ef}	5 h _{ef}	6 h _{ef}	5 h _{ef}	5 h _{ef}	5 h _{ef}	5,2 h _{ef}	4,4 h _{ef}	5,2 h _{ef}	4,4 h _{ef}	4,4 h _{ef}	
[-]					(-	$\left(\frac{f_{\text{ck,cube}}}{25}\right)$	0,5					
nm]	90	105	125	145	160	115	170	190	170	200	225	
[-]						10,1						
	N] N	90 M16 N] 88 N] 88 N] 88 N] 25 Pere Widerstar Min] 130 N] 40 Min] 130 N] 35 Min] 130 N] 35 Min] 130 N] 90	90 105 M16 N] 88 95 N] 88 95 N] 88 95 N] 25 35 ere Widerstand aus mil 180 200 N] 40 50 mil 40 50 mil 130 150 N] 35 50 mil 35 50 mil 5 hef 5 hef -]	90 M16 M16 M16 -] N] 88 95 111 N] 88 95 111 -] 1,5 N] 25 35 50 ere Widerstand aus Fall 1 unit mm] 180 200 250 N] 40 50 50 mm] mm] 4 hef 4 hef 4 hef ere Widerstand aus Fall 1 unit mm] 130 150 160 N] 35 50 40 mm] 35 50 40 mm] 90 105 125	90 105 125 145 M16 M16	90 105 125 145 160 M16 M16	90 105 125 145 160 115 M20	90 105 125 145 160 115 170 M20 (LG)	90 105 125 145 160 115 170 M20 M20	90 105 125 145 160 115 170 190 M24 (LG) (LG	90	

¹⁾ Herausziehen ist nicht maßgebend.

Injektionssystem W-VIZ Leistung Charakteristische Werte bei Zugbeanspruchung, W-VIZ-A M16 – M24, ungerissener Beton, statische oder quasi-statische Belastung Anhang C3

²⁾ Maximale Langzeittemperatur / Maximale Kurzzeittemperatur

Tabelle C5: Charakteristische Werte bei Querbeanspruchung, W-VIZ-A M8 – M12, gerissener und ungerissener Beton, statische oder quasi-statische Belastung

9		3-				,							9			
Dübelgröße W-VIZ-A			40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12			
Montagesicherheitsbe	iwert γ ₂ =γ _{inst}	[-]						1,0								
Stahlversagen ohne	Hebelarm															
Charakteristische Quertragfähigkeit	Stahl, verzinkt	[kN]	1	14 21 34												
V _{Rk,s}	A4, HCR	[kN]	1	15 23 34												
Teilsicherheitsbeiwert	γMs	[-]					1,25									
Duktilitätsfaktor	k ₂	[-]		1,0												
Stahlversagen mit Hebelarm																
Charakteristische	Stahl, verzinkt	[Nm]	3	30	6	0				105						
Biegemomente M ⁰ _{Rk,s}	A4, HCR	[Nm]	3	30	6	0				105						
Teilsicherheitsbeiwert	γMs	[-]						1,25								
Betonausbruch auf o	der lastabgew	andter	1 Seite	•												
Faktor k gemäß ETAG Anhang C bzw. k₃ gem CEN/TS 1992-4		[-]	2													
Betonkantenbruch																
Wirksame Dübellänge Querlast	bei I _f	[mm]	40	40 50 60 75 75 70 80 95 100 110							125					
Wirksamer Außendurchmesser	d_{nom}	[mm]	1	0	1	2	12			1	4					

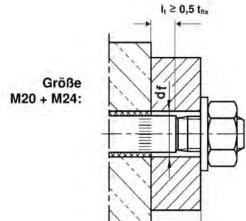

Injektionssystem W-VIZ	
Leistung Charakteristische Werte bei Querlast, W-VIZ-A M8 – M12, gerissener und ungerissener Beton, statische oder quasi-statische Belastung	Anhang C4

Tabelle C6: Charakteristische Werte bei Querbeanspruchung, W-VIZ-A M16 – M24, gerissener und ungerissener Beton, statische oder quasi-statische Belastung

Dübelgröße W-VIZ-A				105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)	
Montagesicherheits- beiwert	γ2=γinst	[-]	1,0											
Stahlversagen ohne h	lebelarm													
Charakteristische Quertragfähigkeit —	Stahl, verzinkt	[kN]			63		= ;	70	(9	9 ¹⁾ 8)		178 ¹⁾ (141)		
V _{Rk,s}	A4, HCR	[kN]	63					86		1 ¹⁾		156 ¹⁾ (123)		
Teilsicherheitsbeiwert	γMs	[-]			1,25			1,4	1,	25		1,25		
Duktilitätsfaktor	k ₂	[-]						1,0						
Stahlversagen mit He	belarm													
Charakteristische Biegemomente —	Stahl, verzinkt	[Nm]			266			392	51	9		896		
M ⁰ _{Rk,s}	A4, HCR	[Nm]			266				454		784			
Teilsicherheitsbeiwert	γMs	[-]			1,25			1,4	1,	25	1,25			
Betonausbruch auf de	er lastabo	jewan	dten S	eite										
Faktor k gemäß ETAG 001, Anhang C bzw. k₃ gemäß CEN/TS 1992-4	k ₍₃₎	[-]	G					2						
Betonkantenbruch														
Wirksame Dübellänge bei Querlast	J _f	[mm]	90 105 125 145 160 115 170 190							170	200	225		
Wirksamer Außendurchmesser	d _{nom}	[mm]	18						22 24			26		

¹⁾ Dieser Wert gilt nur bei Einhaltung der Bedingung It ≥ 0,5 tfix

tfix

Injektionssystem W-VIZ

Leistung

Charakteristische Werte bei Querbeanspruchung, W-VIZ-A M16 – M24, gerissener und ungerissener Beton, statische oder quasi-statische Belastung

Anhang C5

Tabelle C7: Charakteristische Werte bei seismischer Beanspruchung, W-VIZ-A M10 – M12, Kategorie C1 und C2

Dübelgröße W-VIZ-A	Dübelgröße W-VIZ-A							80 M12	95 M12	100 M12	110 M12	125 M12
Zugbeanspruchung												
Montagesicherheitsbeiv	wert	ÿ2=ÿinst	[-]					1,0				
Stahlversagen, Stahl v	verzinkt											
Charakteristische Zugtra	agfähigkeit C1	N _{Rk,s,seis,C1}	[kN]	2	5	35	49	5	4		57	
Charakteristische Zugtra	N _{Rk,s,seis,C2}	[kN]	25 35 49 54 57						57			
Stahlversagen, Edelsta	ahl A4, HCR											
Charakteristische Zugtra	agfähigkeit C1	N _{Rk,s,seis,C1}	[kN]	2	25	35	5 49 54			57		
Charakteristische Zugtra	agfähigkeit C2	N _{Rk,s,seis,C2}	[kN]	2	25 35 49 54				57			
Teilsicherheitsbeiwert		γMs,seis	[-]	1,5								
Herausziehen												
Charakteristische	N	50°C / 80°C 1)	[kN]	14	1,5	14	1,5	30	0,6	36,0	41,5	42,8
ugtragfähigkeit C1 N _{Rk,p,seis,C1} 72°C / 120°C ¹		72°C / 120°C 1)	[kN]	10	0,9	10,9		20	0,0		30,0	
Charakteristische	Charakteristische 50°C / 80°C		[kN]	7	,4	7	,4 8,7		,7	17,6		
Zugtragfähigkeit C2 N _{Rk,p,seis,C2} 72°C / 120°C		72°C / 120°C 1)	[kN]	5	,1	5,1		6	6,5		12,3	

Querbeanspruchung									
Stahlversagen ohne Hebelarm, Stahl v	erzinkt			t					
Charakteristische Quertragfähigkeit C1	V _{Rk,s,seis,C1}	[kN]	11,8	27,2					
Charakteristische Quertragfähigkeit C2	V _{Rk,s,seis,C2}	[kN]	12,6	27,2					
Teilsicherheitsbeiwert	γMs,seis	[-]	1,25						
Stahlversagen ohne Hebelarm, Edelsta	hl A4, HCR								
Charakteristische Quertragfähigkeit C1	V _{Rk,s,seis,C1}	[kN]	12,9	27,2					
Charakteristische Quertragfähigkeit C2	V _{Rk,s,seis,C2}	[kN]	13,8	27,2					
Teilsicherheitsbeiwert	γMs,seis	[-]		1,25					
Stahlversagen mit Hebelarm									
Charakteristisches Biegemoment C1	M ⁰ _{Rk,s,sels,C1}	[Nm]	Keine Leistung bestimmt						
Charakteristisches Biegemoment C2	M ⁰ _{Rk,s,seis,C2}	[Nm]	Keine Leistung bestimmt						

¹⁾ Maximale Langzeittemperatur / Maximale Kurzzeittemperatur

Injektionssystem W-VIZ	
Leistung Charakteristische Werte bei seismischer Beanspruchung, W-VIZ-A M10 – M12, Kategorie C1 und C2	Anhang C6

Tabelle C8:	Charakteristische Werte bei seismischer Beanspruchung,
	W-VIZ-A M16 - M24, Kategorie C1 und C2

Dübelgröße W-VIZ-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)	
Zugbeanspruchung												
Montagesicherheitsbeiwert γ ₂ =	1,0											
Stahlversagen, Stahl verzinkt												
Charakteristische Zugtragfähigkeit C1 N _{Rk,s,seis}	C1 [kN]	88	95	1.1	1	97	96	18	88		222	
Charakteristische Zugtragfähigkeit C2	C2 [kN]	88	95	111 9		97	96	188		222		
Stahlversagen, Edelstahl A4, HCR												
Charakteristische Zugtragfähigkeit C1	_{s,C1} [kN]	88	95	11	1	97	114	16	55		194	
Charakteristische Zugtragfähigkeit C2 N _{Rk,s,seis}	,C2 [kN]	88	95	11	1	97	114	16	5		194	
Teilsicherheitsbeiwert 7 _{Ms}	seis [-]			1,5			1,68	1	5		1,5	
Herausziehen												
Charakteris- 50°C / 80°	C ¹⁾ [kN]	30,7	38,7		43,7		44,4	88	3,2		90,7	
tische Zug- tragfähigkeit C1 N _{Rk,p,seis,C1} 72°C / 120°	C 1) [kN]	25,0	30,0	38,5			29,4	55,8		59,3		
Charakteris- 50°C / 80°		16,3	22,1		26,1		30,9	59	,7		59,7	
tische Zug- tragfähigkeit C2 N _{Rk,p,seis,C2} 72°C / 120°	C 1) [kN]	10,5	14,4	19,5		7.	16,2	44 ,4			44,4	

Querbeanspruchung								
Stahlversagen ohne Heb	elarm, Stahl v	erzinkt						
Charakteristische Quertragfähigkeit C1	V _{Rk,s,seis,C1}	[kN]	39,1	39,1	82,3	107		
Charakteristische Quertragfähigkeit C2	V _{Rk,s,seis,G2}	[kN]	50,4	51,0	108,8 ¹⁾ (71,5)	154,9 ¹⁾ (122,7)		
Teilsicherheitsbeiwert	YMs.seis	[+]	1,25	1,4	1,25	1,25		
Stahlversagen ohne Heb	elarm, Edelsta	hi A4, HCR						
Charakteristische Quertragfähigkeit C1	V _{Rk,s,seis,C1}	[kN]	39,1	39,1	72,2	93		
Charakteristische Quertragfähigkeit C2	V _{Rk,s,seis,C2}	[kN]	50,4	62,6	95,6 ¹⁾ (62,8)	135,7 ¹⁾ (107)		
Teilsicherheitsbeiwert	YMs,seis	[-]	1,25	1,4	1,25	1,25		
Stahlversagen mit Hebel	arm							
Charakteristisches Biegemoment C1	M ⁰ Rk.s,seis,C1	[Nm]	Keine Leistung bestimmt					
Charakteristisches Biegemoment C2	M ⁰ _{Rk,s,seis,C2}	[Nm]	Keine	e Leistung bes	timmt			

¹⁾ Dieser Wert gilt nur bei Einhaltung der Bedingung I₁ ≥ 0,5 tfix (siehe Anhang C5)

Injektionssystem W-VIZ	
Leistung Charakteristische Werte bei seismischer Beanspruchung, W-VIZ-A M16 – M24, Kategorie C1 und C2	Anhang C7

Dübelgröße W-VIZ-A			40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Zuglast im gerissenen Beton	N	[kN]	4,3	6,1	8,0	11,1	11,1	10,0	12,3	15,9	17,1	19,8	24,0
Vereshieleres	δ_{N0}	[mm]	0,5	0,5	0,5	0,6	0,6	0,6	0,6	0,6	0,6	0,7	0,7
Verschiebung -		[mm]		1,3									
Zuglast im ungerissenen Beton N [kN]			4,3	8,5	11,1	15,6	15,6	14,1	17,2	19,0	24,0	23,8	23,8
Varashishung	δ_{N0}	[mm]	0,2	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,6	0,6
Verschiebung	$\delta_{N\infty}$	[mm]		1,3									
Verschiebungen unter seismischer	Zuglast	C2											
Verschiebung für DLS $\delta_{N,s}$	eis,C2(DLS)	[mm]	-	-	1,	0	1,	0	1	,3		1,1	
Verschiebung für ULS $\delta_{N,s}$	eis,C2(ULS)	[mm]	-	-	3,	0	3,	0	3	,9		3,0	

Tabelle C10: Verschiebungen unter Zuglast, W-VIZ-A M16 - M24

Dübelgröße W-VIZ-A	١		90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)		
Zuglast im gerissener Beton	n N	[kN]	14,6	18,4	24,0	30,0	34,7	21,1	38,0	44,9	38,0	48,5	57,9		
Verschiebung	δ_{N0}	[mm]	0,7	0,7	0,7	0,8	1,2	0,7	0,8	0,8	0,8	0,9	0,9		
verscrilebung	$\delta_{N\infty}$	[mm]		1	,3		1,6	1,1	1	,3		1,3			
Zuglast im ungerisser Beton	nen N	[kN]	20,5	25,9	33,0	35,7	48,1	29,6	53,3	63,0	53,3	67,9	81,1		
Verschiebung	δ_{N0}	[mm]	0,6	0,6	0,6	0,6	0,8	0,5	0,6	0,6	0,6	0,6	0,6		
verscrilebung	$\delta_{N\infty}$	[mm]		1	,3		1,6	1,1	1,1 1,3			1,3			
Verschiebungen unte	r seismisch	er Zugla	st C2												
Verschiebung für DLS	$\delta_{\text{N,seis,C2(DLS)}}$	[mm]	1	1,6		1,5		1,7	1	,9		1,9			
Verschiebung für ULS	$\delta_{\text{N,seis,C2(ULS)}}$	[mm]	3	3,7		4,4		4,4		4,0	4,5			4,5	

Injektionssystem W-VIZ	
Leistung Verschiebungen unter Zuglast, W-VIZ-A	Anhang C8

Tabelle C11: Verschieb	ungen unter Querlast	W-VIZ-A M8 – M12
------------------------	----------------------	------------------

Dübelgröße W-VIZ-A	Dübelgröße W-VIZ-A					75	75	70	80	95	100	110	125
Dubeigrobe W-VIZ-A			М8	М8	M10	M10	M12	M12	M12	M12	M12	M12	M12
Querlast	V	[kN]	8,	3	13	,3	19,3						
Vorachishung	δ _{v0} [mm]				2,	9	3,3						
verschiebung	Verschiebung $\delta_{V_{\infty}}$ [mm]		3,6	3,8	4,	4,4 5,0							
Verschiebungen unter seis	mischer Que	erlast C	2										
Verschiebung für DLS	$\delta_{\text{V,seis,C2(DLS)}}$	[mm]	1	-	2,	1	2,5						
Verschiebung für ULS	$\delta_{\text{V,seis,C2(ULS)}}$	[mm]	1	3,7						5,1			

Tabelle C12: Verschiebungen unter Querlast, W-VIZ-A M16 – M24

Dübelgröße W-VIZ	-A		90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)	
Querlast	٧	[kN]			36			44		5 9)	89 (71)			
Vorashiobung	δ_{V0}	[mm]			3,8			3,0	4, (3,					
Verschiebung	$\delta_{\text{V}_{\infty}}$	[mm]			5,7			4,5	6, (4,					
Verschiebungen un	ter seismisch	er Que	rlast C2	2										
Verschiebung für DLS	$\delta_{\text{V,seis,C2(DLS)}}$	[mm]	2,9					3,5						
Verschiebung für ULS	$\delta_{\text{V,seis,C2(ULS)}}$	[mm]			6,8				9,3					

Injektionssystem W-VIZ	
Leistung Verschiebungen unter Querlast, W-VIZ-A	Anhang C9

Dübelgröße W-VIZ-IG			40	50	60	75	70	80	90	105	125	115	170	170
Dubeigrobe w-viz-ig			M6 M6 M8 M8 M10 M10 M12 M12 M12 M16 M16 M											
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{inst}$	[-]						1,	0					
Stahlversagen														
Charakteristische	Stahl, verzinkt	[kN]	15	16	19	29	3	5		67		52	125	108
Zugtragfähigkeit N _{Rk,s}	A4, HCR	[kN]	1	1	19	21	3	3		47		65	88	94
Teilsicherheitsbeiwert	γмs	[-]						1,	,5					
Herausziehen														
Charakteristische Trag-	50°C / 80°C ²⁾	[kN]						1)					
fähigkeit N _{Rk,p} im gerissenen Beton C20/25	72°C / 120°C ²⁾	[kN]	5	7,5	1	2	16	20	20	30	50	30	60	75
Erhöhungsfaktor	Ψc	[-]						$\left(\frac{f_{ck,cu}}{25}\right)$	<u> </u>					
Betonausbruch														
Effektive Verankerungstiefe	h _{ef}	[mm]	40	50	60	75	70	80	90	105	125	115	170	170
Faktor gemäß CEN/TS 1992-	4 k _{cr}	[-]						7	,2					

¹⁾ Herausziehen ist nicht maßgebend

Leistung
Charakteristische Werte bei Zugbeanspruchung, W-VIZ-IG, gerissener Beton

Anhang C10

²⁾ Maximale Langzeittemperatur / Maximale Kurzzeittemperatur

105 | 125 | 115 | 170 | 170

Dübelgröße W-VIZ-IG			40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Montagesicherheitsbeiwert	γ ₂ =γ _{inst}	[-]						1,	,0					
Stahlversagen		_												
Charakteristische Zugtragfähigkeit N _{Rk,s}	Stahl, verzinkt A4, HCR		15 1	16 1	19 19	29 21	3:			67 47		52 65	125 88	108 94
Teilsicherheitsbeiwert	γ̃Ms	[-]						1.	,5					
Herausziehen														
Charakteristische Tragfähigkeit N _{Rk,p}	50°C / 80°C ²⁾	[kN]	9	1)						1)				
im ungerissenen Beton C20/25	72°C / 120°C ²⁾	[kN]	6	9	1	6	16	25	25	35	50	40	75	95
Spalten														
Spalten bei Standardbaute	,	_			_	_		$\overline{}$						
Standardbauteildicke	h _{std} ≥ 2h _{ef}	[mm]	10	0	120	150	140	160	180	200	250	230	340	34
Fall 1 (N ⁰ _{Rk,c} wird ersetzt durc	ch N ^o _{Rk,sp})													_
Charakteristische Tragfähigkeit in Beton C20	0/25 N ⁰ _{Rk,sp}	[kN]	7,5	9	16	20	20	1)	40	50	50	1)	1)
Achsabstand (Randabstan	d) $s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]		3 h _{ef}										
Fall 2														_
Achsabstand (Randabstan							5h _{ef}		ψ.	4h _{ef}	4h _{ef}	3h _{ef}	3h _{ef}	3h
Spalten bei Mindestbautei													· · · · ·	_
Mindestbauteildicke	h _{min} ≥	[mm]	8	0	100	110	11	0	130	150	160	160	220	22
Fall 1 (N ⁰ _{Rk,c} wird ersetzt durc	ch N ^o _{Rk,sp})													_
Charakteristische Tragfähi Beton C20/25	gkeit in N ⁰ Rk,sp	[kN]	7,5	-	1	6	20	25	35	50	40	-	75	1
Achsabstand (Randabstan	d) $s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]						3	h _{ef}					
Fall 2														
Achsabstand (Randabstan	d) $S_{cr,sp}$ (= 2 $C_{cr,sp}$)	[mm]	6 h _{ef}	7 h _{ef}	6 h _{ef}	7 h _{ef}	7 h _{ef}	6 h _{ef}	5 h _{ef}	5 h _{ef}	6 h _{ef}	5 h _{ef}	5,2h _{ef}	5,2
Erhöhungsfaktor		[-]						(f _{ck,cu}	he \ 0,5					

Faktor gemäß CEN/TS 1992-4

1) Herausziehen ist nicht maßgebend

Effektive Verankerungstiefe

Betonausbruch

h_{ef} [mm]

 k_{ucr}

40

50

60

75

70

80

10,1

90

Injektionssystem W-VIZ	
Leistung Charakteristische Werte bei Zugbeanspruchung, W-VIZ-IG, ungerissener Beton	Anhang C11

¹⁾ Herausziehen ist nicht maßgebend 2) Maximale Langzeittemperatur / Maximale Kurzzeittemperatur

Tabelle C15:	Charakteristische Werte bei Querbeanspruchung, W-VIZ-IG,										
gerissener und ungerissener Beton											

Dübelgröße W-VIZ-IG			40 M6	50 M6	60 M8	75 M8	70 M 10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20	
Montagesicherheitsbeiwert	γ ₂ =γ _{inst}	[-]	1,0												
Stahlversagen ohne Hebel	arm														
Charakteristische	Stahl, verzinkt	[kN]	8,	8,0		15	18		34			26	63	54	
Quertragfähigkeit V _{Rk,s}	A4, HCR	[kN]	5,5		9,5	10	16		24			32	44	47	
Teilsicherheitsbeiwert	γMs	[-]	1,25												
Duktilitätsfaktor	k ₂	[-]						1,	0						
Stahlversagen mit Hebelar	m														
Charakteristische	Stahl, verzinkt	[kN]	1	12		30		0	105			212	266	519	
Biegemomente M ⁰ Rk,s	A4, HCR	[kN]	8,	5	2	1	42		74			187	187	365	
Teilsicherheitsbeiwert	γMs	[-]						1,	25						
Betonausbruch auf der las	tabgewandten	Seite													
Faktor k gemäß ETAG 001, Anhang C bzw. k₃ gemäß CEN/TS 1992-4	k ₍₃₎	[-]	2												
Betonkantenbruch															
Wirksame Dübellänge bei Qu	erlast I _f	[mm]	40	50	60	75	70	80	90	105	125	115	170	170	
Wirksamer Außendurchmesse	er d _{nom}	[mm]	10		12		14		18		22	24	26		

Tabelle C16: Verschiebungen unter Zuglast, W-VIZ-IG

Dübelgröße W-VIZ-IG	40 M6	50 M6	60 M8	75 M 8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20		
Zuglast im gerissenen Beton	Ν	[kN]	4,3	6,1	8,0	11,1	10,0	12,3	14,6	18,4	24,0	21,1	38,0	38,0
Varabiahung		[mm]	0,5		0,5	0,6	0,6		0,7			0,7	0,8	0,8
Verschiebung	δ_{N_∞}	[mm]					1,3					1,1	1,3	1,3
Zuglast im ungerissenen Beton	Ν	[kN]	4,3	8,5	11,1	15,6	14,1	17,2	20,5	25,9	33,0	29,6	53,3	53,3
Vorashishung	δ_{N0}	[mm]	0,2 0,4		0,	0,4		4	0,6			0,5	0,6	0,6
Verschiebung	$\delta_{N_{\infty}}$	[mm]		1,3									1,3	1,3

Tabelle C17: Verschiebungen unter Querlast, W-VIZ-IG

Dübelgröße W-VIZ-IG				50 M6	60 M8	75 M8	70 M10	70 80 M10 M10		105 M12	125 M12	115 M16	170 M16	170 M20
Querlast Stahl, verzinkt	٧	[kN]	4,6		5,4	8,4	10,1		19,3		14,8	35,8	30,7	
Verschiebung δ_{V0}		[mm]	0,4		0,5	0,4	0,5		1,2			0,8	1,9	1,2
Verschiebung	$\delta_{V_{\infty}}$	[mm]	0,	7	0,8	0,7	0,8		1,9			1,2	2,8	1,9
Querlast Edelstahl A4 / HCR	٧	[kN]	3,	3,2		5,9	9,3		13,5			18,5	25,2	26,9
Verschiebung	δ_{V0}	[mm]	0,	3	0,5	0,3	0,	5		0,9		1,0	1,4	1,1
verscriebung	δ_{V_∞}	[mm]	0,	4	0,7	0,5	0,7		0,7 1,4		1,5	2,1	1,6	

Injektionssystem W-VIZ

Leistung

Charakteristische Werte bei Querbeanspruchung, W-VIZ-IG, gerissener und ungerissener Beton, Verschiebungen

Anhang C12